Engineering a novel, stable dimeric streptavidin with lower isoelectric point.

نویسندگان

  • Filiz M Aslan
  • Yong Yu
  • Sandor Vajda
  • Scott C Mohr
  • Charles R Cantor
چکیده

We have engineered a soluble, stable two-chain dimeric streptavidin (TCD) in Escherchia coli. Examination of the three-dimensional structure of streptavidin aided by empirical binding free-energy calculations helped us to select mutations at subunit interfaces that dissociate the native tetramer and stabilize the desired dimer. We chose positions W120, L124, V125 and H127 and mutated them to 120D/124D/125D/127D (TCD-1); 120D/124N/125S/127D (TCD-2); and 120D/124D/125S/127D (TCD-3). The H127D mutation creates electrostatic repulsion that disrupts the dimer-dimer interface, but leaves it very hydrophobic. Therefore, W120, L124 and V125 were mutated to hydrophilic residues to increase dimer solubility. Among the three candidates, TCD-2 gave the best result: a stable, active dimer with K(d) for biotin of approximately 1x10(-7)M after purification by gel-filtration chromatography. The experimental results confirm the possibility of rational engineering of low-pI dimeric streptavidins. Reduced-size streptavidin mutants with a net negative charge may be more suitable than antibodies or wild-type streptavidin for the targeting step in radioimmunotherapy because they should clear faster from the bloodstream and the kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering subunit association of multisubunit proteins: a dimeric streptavidin.

A dimeric streptavidin has been designed by molecular modeling using effective binding free energy calculations that decompose the binding free energy into electrostatic, desolvation, and side chain entropy loss terms. A histidine-127 --> aspartic acid (H127D) mutation was sufficient to introduce electrostatic repulsion between subunits that prevents the formation of the natural tetramer. Howev...

متن کامل

Genetic engineering of streptavidin, a versatile affinity tag.

Streptavidin, a tetrameric protein produced by Streptomyces avidinii, has been used as a useful, versatile affinity tag in a variety of biological applications. The efficacy of streptavidin is derived from its extremely high binding affinity for the vitamin biotin. For the last several years, we have used genetic engineering as a primary means to enhance the properties of streptavidin and to ex...

متن کامل

Effect of pH on Structural Properties of Heat-Induced Whey Protein Gels

Formation and structure of whey protein heat-induced gels (100 mg mL-1) through heat treatment at 80 °C and pH modifications at three pH values of acidic (2), isoelectric (5.6) and neutral (7) were studied. The obtained results indicated that the nature of the primary gel networks was different at each pH value. The heat-induced gels produced at pH of 2 and 7, had acceptab...

متن کامل

Isoelectric focusing in a silica nanofluidic channel: effects of electromigration and electroosmosis.

Isoelectric focusing of proteins in a silica nanofluidic channel filled with citric acid and disodium phosphate buffers is investigated via numerical simulation. Ions in the channel migrate in response to (i) the electric field acting on their charge and (ii) the bulk electroosmotic flow (which is directed toward the cathode). Proteins are focused near the low pH (anode) end when the electromig...

متن کامل

Molecular engineering of streptavidin.

Streptavidin is a tetrameric protein produced by the bacterium Streptomyces avidinii; it has great similarity to the chicken protein avidin.14 These proteins bind the vitamin biotin with an extremely high affinity. The dissociation constant of streptavidin-biotin and avidin-biotin complexes is estimated at around M;3.4 this is one of the tightest noncovalent interactions found in biological sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biotechnology

دوره 128 2  شماره 

صفحات  -

تاریخ انتشار 2007